ARP ホームページ制作
ウェブアプリケーション開発
アンケート調査
制作実績
ホームページ作成 アプリケーション開発 アンケート調査 制作実績
ごあいさつ 会社概要 リクルート リンク集 アクセスマップ サイトマップ
Tel:03-3666-0405 Fax:03-5652-3410 株式会社アープへのお問い合せ トップに戻る
連載

あなたはビルゲイツの試験に受かるか?
バックナンバー
ウェブアプリケーション開発

その120

見落としがちな確率

前号へ
  次号へ

 前問のコイン投げの設問は、永遠に続くことも起こり得る問題だったため、当初、これは解けないのではないかとされる皆さんもあったかもしれません。 
 しかし、永遠に続くというそのこと自体が、収斂という形で正解へと導く重要な手がかりを与えてくれました。
 等比数列、あるいは収斂といったことを知らなくても、地道に考えていけば正解に至ることがわかる問題でした。

 それでは、今号の設問に入ります。
 

問題 設問120    社会主義国家のある都市では、タクシーの色が青色と濃い緑色の2色だけに規制統一されていて、その総台数の10%が青色で、90%が濃い緑色の車体である。あるときこの都市でタクシーによるひき逃げ事件が発生した。幸い1人の目撃者Aがいて、犯人のタクシーは青色だと証言した。そこでその証言がどのくらい正確かを確かめるために、事故のときと同じような状況を再現し、Aの識別能力をテストしたところ、85%の確率で正解できるが15%の確率で間違えることが分かった。証言通り、青色のタクシーが犯人である確率はいくらか?

 さて皆さんの直感として、青色のタクシーが犯人とする確率はどの程度だと思いますか。
 たくさんのタクシーの中で、青色車体がわずか10%しかない希少なものであり、それだけに目立つため識別もし易く、さらに目撃者の見間違いもわずか15%で、その識別能力が85%という数値から判断すると、直感的にその確率は85%よりは少し低いものの、70%から80%くらいの間ではないか、と予想されるのではないでしょうか。

 当設問の中の数値を変えてあるものの、オリジナルの元ネタは2002年に行動経済学でノーベル経済学賞を受賞したダニエル・カーネマンが心理学の実験で出題したもので、以降、その多くが感染者や遺伝子の検査による確率やその他、様々な形に変化して出題されるようになっています。
 行動経済学ついては巻末で少々補足しますが、当設問は直感と現実との間に大きな開きがあるということを改めて認識させる問題です。

 それでは当設問の解説に入ります。

 まずはそのとっかかりとして、突破口となる対処法をまとめた本シリーズの「その73」を参照してみますが、その中にずばり該当しそうな項目が見当たりません。
 確率という観点からしいて言えば、設問31の果物を食べられない園児の問題あたりが似ていると言えます。しかし、課題の本質はまったく違います。
 でも、この問題を解くに当たってその助けとなるヒントがあるのですが、その助けがどれほどの効果を発揮するものかを実感、比較していただくために、まずはオーソドックスな解き方から見てもらいます。

 最初に「犯人のタクシーは青色」と目撃者が証言する場合を考えます。
この場合は、

  • 青色タクシーを見て「青色」だと、正しく証言。
  • 緑色タクシーを見て「青色」だと、誤認して証言。

 の2通りがあることがわかります。
 ここで大事なことは、見落としがちな確率で、それは全体の確率を念頭に置いておかなければならないということです。

 つまり青色タクシーを見て「青色」だと証言する確率は、まずはタクシー全体の中から青色タクシーを見る確率が先にあり、そのあとで正しくその色を識別できる確率を考えねばならないことです。
 したがって青色タクシーを見て「青色」だと証言する確率は、
「青色タクシーを見る確率 × 正しく色を識別できる確率」として求められます。

 そこで設問に示されている、 青色タクシーを見る確率:10%
 正しく色を識別できる確率:85% を当てはめれば、
青色タクシーを見て正しく「青色」だと証言する確率= 0.10 × 0.85 = 0.085 (8.5%) となります。・・・(1)

 次に誤認の場合です。

前述と同様に、緑色タクシーを見て「青色」だと証言する確率は、
「緑色タクシーを見る確率 × 誤認の確率」として求められます。
そこで同様に示されている、
 緑色タクシーを見る確率:90%
 誤認の確率:15% を当てはめれば、
緑色タクシーを見て「青色」だと証言する確率= 0.90 × 0.15 = 0.135 (13.5%) と出ます。

したがって、「犯人のタクシーは青色」と目撃者が証言する全体の割合は、これら2つの場合を足した 8.5% + 13.5% = 22% ・・・ (2)であることがわかります。
 そこで求める「証言通り、青タクシーが犯人である確率」は、
青色タクシーを見て正しく「青色」だと証言する確率(1)÷ 「青色」と証言する誤認も含めた全体の確率(2)
になりますから、
 解答は(1)÷(2)= 8.5% ÷ 22% ≒ 0.386 (39%) ・・・ (3)
と出ます。

 でも、設問には具体的なタクシー台数がないため、なんだかすっきりしないというのであれば、全体の台数を仮にX台とすれば、(1)は0.085X台、(2)は0.22X台となるだけで、(3)は0.085X÷0.22X≒0.386 と同じ結果になります。

 それでは前述した「問題を解くに当たってその助けとなるヒント」です。
 それは確率を言葉だけで処理しようとするよりも、図形化してみることで、ずっと分かり易くなるということです。
 その図形化が幾何学でよく使う補助線と同じ役割をしてくれる
わけです。

 その図形化を使うと、まずタクシーの台数分布は図1のようになります。
 さらに、それに目撃者の正誤率である図2を当てはめたものが図3です。
 ここから前述の計算(2)が簡単にわかることから即座に(3)の解答が得られ、このほうが、ずっと分かり易くすぐに解けるわけです。

 この40%以下という解答をみると、当初に予想した確率よりもずっと低いために、以外に思えます。
 その理由は、見間違いの確率がたとえ15%と低いものであっても、緑色のタクシーの台数が非常に多いため、見間違いの台数も多くなるということに起因するのです。
 このことは、図形化でよくわかると思います。

 これからもわかるように、よほどしっかりとした事前の綿密な調査をしないと、冤罪や誤った結論付けというとんでもない結果を招くことになってしまうことから、そのような結末を招かないための警鐘問題にもなるということです。

 それではここで、ダニエル・カーネマンについてちょっと覗いてみてみます。



 不確実性のもとで、人はどのような判断・意思決定をするか、人間の思惑という観点から経済の世界を見たのが、「行動経済学」発展の基になったダニエル・カーネマンの「プロスペクト理論」で、その主旨は消費者行動論、公共選択の理論、株価変動やキャピタル・ゲイン(ロス)などを扱う行動ファイナンス理論に幅広く応用されており、これがノーベル経済学賞の対象になりました。
 この理論は同じイスラエル人のエイモス・トベルスキーとの共同研究で発表したものですが、トベルスキーはすでに他界していたため、受賞できませんでした。

 この行動経済学の中では、人間の直感的な判断としてスピードなどの利点があるものの、

  • 頭に思い浮かびやすい情報をもとに判断する
  • 物事の代表的な面からだけで判断する
  • 一旦正しいと判断すると修正が効かない
  • 好き嫌いなどの感情で判断する
  • 特定の判断基準に引っぱられる

などから、しばしば人間が陥りやすい不合理な選択について言及されています。

 人間が直感で答えを出す例として、カーネマンは即答を求める実験で、次のような問題を出しています。
「ここにバットとボールがあります。合わせて1100円です。バットはボールよりも1000円高いです。ではボールはいくらですか」と。
 正解は50円ですが、回答者は即答を求められているため、たいてい100円と答えてしまうとのことですが、これは頭に思い浮かびやすい直感のなせるものだとしています。

 またこれも即答してくださいとして、「aで始まる単語と、3文字目にaがくる単語とはどちらが多いと思いますか」という問題です。
 aで始まるのはapple、america、alarm ・・・ など、それなりに出てきますが、3文字目にaがくる単語となると、すぐにはなかなか頭に思い浮かばないものです。
 したがってほとんどの回答者は、aで始まる単語のほうが多いと答えるとのことですが、実はその数は全英単語の6%弱ほどで、実際はsmall、smart、smash ・・・ などの3文字目にaがくる単語のほうが、9%強と多いのです。

 もう1つ、日本であなたが次の問題に即答を求められたとしたら、どのように答えますか。

「厚生労働省研究班が、タバコの先から出る煙や喫煙者が吐き出した煙を意図しないで吸い込むという、いわゆる「受動喫煙」で年間6800人の人が死亡すると公表しました。では交通事故により24時間以内に死亡した年間死亡者数は、この数よりも多いか少ないか。また実際には何人くらいだと思いますか」という問題です。

 おそらくあなたは交通事故による年間死亡者数はこの数よりもずっと多くて、万という単位を想像されるのではないでしょうか。
 しかし実際の統計によれば、この数は平成25年が4,373人、26年が4,113人と出ています。
 これは人口10万人に対して3.2人の割合で、0.0032%という数字になってしまいます。

 我々は「受動喫煙」による死亡者、あるいは死亡者数などというものには、日常、ほとんど触れる機会がなく、逆にテレビや新聞などを通して、日夜、交通事故のニュースを目にし耳にしているため、断然、交通事故による死亡者のほうが多いと感じてしまうのです。

 ちなみに、厚生労働省研究班が公表した年間6800人(四捨五入)の「受動喫煙」死亡者のうち、女性4582人、男性2221人で、職場での受動喫煙が原因とみられる死亡は半数以上の約3600人、また喫煙による死者は年間約13万人と推計されています。

 以上、「行動経済学」に関連して、人間の直感的な判断の中の1項目、「頭に思い浮かびやすい情報をもとに判断する」の例を2、3見てみました。


 当設問の背景は、往々にして見落としがちになる確率、この設問で言えば、まず最初に考えておかなければならない全体の中でのタクシー台数の分布割合で、それを最初からしっかりと意に留めているかどうか、さらにはヒントで挙げたように、この設問は要点さえわかっていれば素早く計算できる問題であることから、その回答スピードを見ようというものです。

 それでは設問120の解答です。

正解

正解120

 約41%。「犯人のタクシーは青色」と目撃者が証言する場合は2通りあり、1つはA.青色タクシー(10%)を見てそれを「青色」だと正しく証言(85%)する場合。その確率は0.10 x 0.85 =0.085(8.5%)。もう1つはB.緑色タクシー(90%)を見て「青色」だと誤認して証言(15%)する場合で、その確率は0.90 x 0.15 =0.135(13.5%)。したがって証言通り、青色のタクシーが犯人である確率は、「犯人のタクシーは青色」と目撃者が証言した場合の中で、青色タクシーを見て正しく「青色」だと認識した場合の比率を求めれば良い。それはA/(A+B)なので、0.085/(0.085+0.135) ≒0.386、約39%となる。

 
 では、次の問題をやってみてください。


問題 設問121  難病と言われている或る伝染病は1万分の1の確率で発症することがわかっていますが、これまでなかなかよい検知薬ができませんでした。しかし最近になって99%もの確率でこの伝染病の感染を特定できる新薬が開発されました。その新薬を使った検査で、あなたはこの伝染病に感染していると診断されてしまいました。絶望の淵に追いやられたあなたが、この伝染病に感染している確率は、ずばり答えてどれだけでしょうか?

前号へ   次号へ


 ビル・ゲイツの出題問題に関しては、HOW WOULD YOU MOVE MOUNT FUJI ? (Microsoft’s cult of the puzzle. How the world’s smartest companies select the most creative thinkers. )By William Poundstore の原書や、筆者の海外における友人たちの情報を参考にしています。
 また連絡先不明などにより、直接ご連絡の取れなかった一部メディア媒体からの引用画像につきましては、当欄上をお借りしてお許しをいただきたく、よろしくお願い申し上げます。


梶谷通稔 【執筆者】  梶谷通稔 - かじたに みちとし
岐阜県高山市出身 早稲田大学理工学部応用物理学科卒

元 :   米IBM ビジネス エグゼクティブ
現在: (株)ニュービジネスコンサルタント社長
    日本IBM  GBS 顧問
    東北芸術工科大学 大学院客員教授
    (株)アープ 最高顧問
 講演・セミナー・研修・各種会合に (スライド9125枚とビデオを使用)
 コンピューター分析が明かすリクエストの多い人気演題例
 (参加者層に応じてミックス可) (各1~2時間)
  ・ビジネスの「刑事コロンボ」版。270各社成功発展のきっかけ遡及解明
テレビ出演
  ・不況や国際競争力にも強い企業になるには。
   その秘密が満載の中小企業の事例がいっぱい
  ・成功する人・しない人を分けるもの、分けるとき。
  ・もったいない、あなたの脳はもっと活躍できる!
  ・こうすれば、あなたもその道の第一人者になれる!
  ・求められるリーダーや経営者の資質。
  ・栄枯盛衰はなぜ起こる。名家 会社 国家衰亡のきっかけ。
  ・人生1回きり。あなたが一層輝くために。
  ・どう変わる! インターネット社会


 出版:
  1988年  『企業進化論』 (日刊工業新聞社刊) ベストセラー
  1989年   『続・企業進化論』 (日刊工業新聞社刊) ベストセラー
  2009年   『成功者の地頭力・あなたはビルゲイツの試験に受かるか』 (日経BP社)

 連載:
  1989年 - 2009年   『徒然草』 (CSK/SEGAの全国株主誌)
  1996年 - 2003年   『すべてが師』 (日本IBMのホームページ)
  1995年 - 進行中   『あなたはビル・ゲイツの試験に受かるか』 (Web あーぷ社)

※この連載記事の著作権は、執筆者および株式会社あーぷに帰属しています。無断転載・コピーはおやめください。

Page top